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Abstract 
During Phase 1 of the Weyburn Project (2000-2004), 4D reflection seismic data were 
used to map CO2 migration within the Midale reservoir, while an extensive fluid 
sampling program documented the geochemical evolution triggered by CO2-brine-oil-
mineral interactions. The aim of this task (3b.11) is to exploit these existing seismic and 
geochemical data sets, augmented by CO2/H2O injection and HC/H2O production data 
toward  optimizing the reservoir model and thereby improving site characterization and 
dependent predictions of long-term CO2 storage in the Weyburn-Midale reservoir. 
 
Our initial project activities have concentrated on developing a stochastic inversion 
method that will identify reservoir models that optimize agreement between the observed 
and predicted seismic response. This report describes the technical approach we have 
followed, the data that supports it, and associated implementation activities. The report 
fulfills deliverable D1 in the project’s statement of work. Future deliverables will 
describe the development of the stochastic inversion tool that uses geochemical data to 
optimize the reservoir model. 
 
This work has been performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
 
 



 

Introduction 
When completed, our completed stochastic inversion tool will explicitly integrate 
reactive transport modeling, facies-based geostatistical methods, and a novel stochastic 
inversion technique to optimize agreement between observed and predicted storage 
performance. Such optimization will be accomplished through stepwise refinement of: 1) 
the reservoir model—principally its permeability magnitude, anisotropy, and 
heterogeneity—and 2) geochemical parameters—primarily key mineral volume fractions 
and kinetic data. We anticipate that these refinements will facilitate significantly 
improved history matching and forward modeling of CO2 storage. We are unaware of any 
previous attempts to explicitly integrate seismic and geochemical data, which represent 
key components of CO2 monitoring for Weyburn and future commercial storage projects. 
 
We believe that the stochastic inversion tool under development will optimize agreement 
between predicted and observed storage performance. We expect that the tool will 
identify optimal: a) permeability distributions in the reservoir, b) mineral volume fraction 
and c) kinetic data. Our tool uses the Markov Chain Monte Carlo (MCMC) methodology 
(e.g., Aines, et al., 2002; Ramirez et al., 2005). Model optimization will be carried out in 
two steps. First, we will use seismic data to refine the spatial distribution of reservoir 
permeability, which effectively defines the spatial framework of CO2 migration; then, we 
will use fluid chemistry data to refine mineral volume fractions and kinetic data, which 
effectively control CO2-triggered geochemical changes in the reservoir. 
 
The seismic measurements detect the CO2 distribution that is controlled by the reservoir 
permeability. They also define the spatial distribution of physical trapping mechanisms 
that will keep the CO2 in the reservoir over long time periods. The fluid chemistry data 
tracks the compositional evolution controlled by water-CO2-mineral reactions. The tool 
will also use CO2/H2O injection and HC/H2O production data to constrain the fluid flow 
simulations. Core logs, geophysical logs and knowledge of the depositional environment 
will be used to constrain random reservoir model realizations. 
 
The following models are embedded within our stochastic inversion algorithm: 1) a 
geostatistical model that proposes geologic realizations of the reservoir that are randomly 
perturbed about some initial reservoir model, 2) a flow simulator that predicts CO2 
migration and CO2/H20 production, 3) a seismic forward model that predicts zero-offset 
seismograms using pressure and saturation information produced by the CO2 flow 
simulator, 4) an extended reactive transport model that calculates aqueous chemical 
reactions as a function of space and time, and predicts dissolved chemical species.  
 
This document describes the methods required to carry out the first inversion step: 
identify reservoir models that optimize agreement between the observed and predicted 
seismic response; we will refer to this the permeability step. We will discuss in detail 
items 1 – 3 in the previous paragraph. Future deliverables will describe methods required 
to carry out the second inversion step:  identify geochemical parameters (mineral volume 
fraction, kinetic parameters) that optimize agreement between and observed aqueous 
chemistry. 
 



 

 

Approach description 
MCMC Introduction 
Our MCMC approach is a derivative of the Metropolis algorithm (Metropolis et. al., 
1953) as described by Mosegaard and Tarantola (1995). It uses a Markov chain process 
to control the sampling of the model space . Within this framework, the solution to an 
inverse problem is an estimate of the posterior probability distribution defined over 
model space . Then, for any potential solution , the method will provide an 
estimate of the probability and confidence that state   (i.e., proposed model) is the true 
state of the underlying system.  
 

There are two major components to the approach: 
1) A base representation specifying the rules that the proposed reservoir models of the 

system must obey. These rules are based upon a priori knowledge such as  
information from geophysical logs and core measurements. 

 
2) A Markov Chain Monte Carlo (MCMC) simulation algorithm that generates 

samples according to the unknown posterior distribution. Our Bayesian approach is 
driven by an importance sampling algorithm (described in a subsequent section). It 
uses a randomized decision rule to accept or reject the proposed models according 
to their consistency with the observed data. 

 
The main advantage of this approach is that it automatically identifies alternative models 
that are consistent with all available data, and objectively ranks them according to their 
posterior probabilities and associated confidences. In most geophysical applications, the 
inverse problem is substantially under-constrained and ill-posed. Thus, the search for a 
solution that is unique and possesses a high degree of confidence is generally impossible.  
Hence, it is wiser to consider approaches that are capable of generating alternative 
models and ranking them. 

 
The MCMC approach is similar to classical deterministic inversion with the random 
model generator replacing the deterministic updating scheme (usually based on a gradient 
search). In both cases, an initial model is chosen and responses are calculated with a 
forward solver. The calculated responses are compared to observed data. Finally, an 
updated model is chosen and the process repeats. The two approaches differ in how the 
updated model is chosen and the final result of the process. Specifically, MCMC 
produces a probability distribution defined over X; while, deterministic methods produce 
a single or a collection of states from X that best explain the data. 
 



 

The inverse problem under consideration may be described as follows. Let  denote the 
data space, and 

€ 

x denotes the model, then suppose that there exists a mapping  such 
that: 

  

  (1) 

 

The goal is to find an  that corresponds to the set of observations, . An important 
point here is that X, the range of possible solutions, is limited by a priori knowledge. In 
our application, this prior knowledge consists of data such as: approximate locations of 
lithology boundaries, lithology types, knowledge of the depositional system, and 
correlations between porosity, lithology and permeability. 
 

The MCMC sampling process can be viewed as consisting of two separate components: 
prior knowledge and measurements . We will describe in detail the first component, the 
generation of model realizations that are consistent with the available prior knowledge in 
the upcoming section titled “ Propose Reservoir Model Realizations“. We now discuss 
the second component: a decision process that either accepts or rejects these model 
realizations according to their consistency with the measurements .  

 

Specifically, for each reservoir model realization, the seismic forward simulator is used to 
predict a measurable quantity such as amplitude of a reflector; the seismic simulator will 
be described in detail in upcoming sections. These predictions are then compared to 
corresponding measurements to determine the likelihood  that the given state 

 produced the observed data. An accept/reject decision based upon this likelihood 
is used to modify the prior sampling process. The result is a new Markov chain, R, which 
samples the posterior distribution, . These samples provide the basis for estimating 
the posterior distribution and any subsequent inference concerning the true unknown state 
of the system. 

 
All MCMC approaches are based on Bayesian inference. Formally, Bayes rule relates the 
prior and posterior distributions as follows: 
 

      (2) 

 

where 

€ 

Ρ x d( )  is the posterior distribution, and 

€ 

L x( )  is the likelihood function, a 
measure of the degree of fit between the data predicted assuming model x and the 
observed data.  Based on the available prior data, the prior can have a distribution 
that is uniform, Gaussian, or unknown. We do not need to know  explicitly because 
the method only requires the ability to produce samples from the distribution.  



 

 
 

Permeability Step Description 
We now describe how we have adapted the MCMC approach to carry out the first 
inversion step: identify reservoir models that optimize agreement between the observed 
and predicted seismic response. Figure 1 schematically shows a flow diagram indicating 
the methods required to identify reservoir models that produce CO2 plumes that provide 
optimal agreement with the seismic data (permeability step). We explicitly account for 
uncertainties associated with both limited sensitivity and measurement error by using the 
Metropolis-Hastings technique, which is the core of our MCMC approach (Moosegrad 
and Tarantola, 1995).  
 
We assume that CO2 plume evolution is well mapped by 4D seismic reflection technique. 
We also assume that the flow/reactive transport simulator (NUFT, Nitao, 1998 a,b ) 
produces sufficiently accurate predictions of reservoir conditions. Furthermore, we 
assume that Gassman’s fluid substitution model (Gassmann, 1951) produces sufficiently 
accurate seismic velocity predictions given the temperature, pressure and fluid saturation 
conditions in the reservoir.  
 
The process starts by proposing one reservoir model realization, distinguished by its 
representation of permeability magnitude, anisotropy, and heterogeneity. Then, using the 
multi-phase/multi-component reactive transport model NUFT, we simulate CO2/H2O 
injection, HC/H2O withdrawal, and CO2 migration. Next, we calculate a first-order 
estimate of seismic response to these reservoir conditions. P-wave velocities are predicted 
as a function of fluid-phase saturations, pressure, and porosity using Gassmann’s 
equation.  The velocity is used together with calculated bulk densities to generate an 
intra-reservoir reflectivity series. These series are convolved with an estimate of the 
source wavelet to predict time-series waveforms that can be directly compared to 
observed seismic response. The likelihood for each model is computed and the 
Metropolis-Hastings algorithm is used to decide whether the proposed model produces 
relatively close agreement between predicted and observed 4D seismic reflection data. 
Then, a new reservoir model is proposed and the process is repeated until the process 
converges. This approach will produce a posterior distribution that ranks all the posed 
reservoir models on the basis of likelihood, which is an explicit measure of consistency 
between predicted and observed seismic response.  We will now describe each of these 
steps in detail. 
 

PROPOSE RESERVOIR MODEL REALIZATIONS 
We are following a staged approach in developing the algorithm that proposes reservoir 
model realizations. In the initial project stages we are using a simpler algorithm that will 
be replaced by a more complicated and realistic algorithm in later project stages. This 
document will describe the simpler algorithm. In future project phases, we will use a 
more advanced and realistic method to propose reservoir models -- TProGS (Transition 
Probability Geostatistical Software). It will generate realistic 3D lithologic distributions 
that honor both lithologic/geophysical core data and facies transitional/juxtapositional 
relationships that characterize the relevant depositional environment (Carle and Fogg, 



 

1997; Carle et al., 1998).  These lithologic models will be populated with 
porosity/permeability data based on prior knowledge of the relationship between 
lithology and porosity/permeability for the specific depositional setting. 
 
Here we describe in detail the simpler algorithm. The reservoir model proposal step starts 
(top left box, Figure 1) by reading in EnCana’s single-permeability (matrix flow only) 
reservoir model as truth and propose as a series of realizations (or perturbations) about 
this “reality” that are bound by known/estimated uncertainties in lithologic distribution 
and dependent porosity/permeability.  
 
We use available porosity/permeability data to constrain the reservoir model realizations. 
We have identified six layers that are included in the “reservoir box”, i.e., the volume 
where our calculations will concentrate. The reservoir box includes: Ratcliffe formation, 
Midale evaporite, Midale Marly, Midale Vuggy , Frobisher Marly and Frobisher Vuggy. 
Currently, we have sufficient permeability/porosity data to estimate the statistical 
properties of the Midale Marly, Midale Vuggy, Frobisher Marly and Frobisher Vuggy. 
For the Ratcliffe and Midale evaporite layers we will assign values based on assumed 
statistical distributions. 
 
Core porosity/permeability data for the Midale and Frobisher formations are shown in 
Figures 2 and 3. This data was provided by Erik Nickel, Petroleum Geology Branch, 
Saskatchewan Ministry of Energy and Resources.  
 
The histograms in the top row of Figure 2 show the distributions of porosity. The 
histograms suggest that both formations have bimodal porosity distributions. In the 
Midale, the most likely mode is centered near 0.1 and the second most likely mode is 
centered near 0.24; these two modes correspond to the Vuggy limestone and Marly 
dolostone units, respectively. In the Frobisher, the most likely mode is centered near 0.07 
and the second mode is centered near 0.24. The histograms suggest that smaller porosity 
values are more frequent than the larger values and that the porosities range from 0.03 to 
0.35. 
 
The bottom row histograms in Figure 2 show the distributions of log10 permeability. 
There are some large peaks for values below 10-2 milli-darcies that appear to be caused 
by permeabilities set to a default value; we will ignore these peaks. The histograms 
suggest that both permeability distributions are uni-modal and follow a lognormal 
distribution. The values are centered near 10-1 milli-darcies in both the Frobisher and 
Midale units but the values can range from 10-4 to 104. 
 
We now examine the correlation trends between porosity and permeability. The top row 
of Figure 3 shows plots of log10 permeability plotted as a function of porosity.  The plots 
suggest that porosity and permeability are correlated in both units. Both plots show two 
clusters, one centered near porosity of 0.1 (Vuggy limestone) and the other centered near 
porosity 0.25 (Marly dolostone). The former cluster shows a larger spread of permeability 
values (10-2 to 103) than the cluster associated with the Marly dolostone (10-1 to 101.5). 
 



 

In order to use these porosity/permeability trends to constrain the reservoir model 
realizations, we have computed the mean and standard deviation of log10 permeability as 
function of porosity; we used porosity window widths of 0.01 units to do the calculations. 
The results are shown in the bottom row of Figure 3. The red circles indicate the mean 
log10 permeability for all values within a window; the blue circles indicate the median 
value.  The triangles indicate the 1 standard deviation spread about the mean value.  
 
The Vuggy and Marly sub-units in the Midale and Frobisher formations can be 
approximately segregated based on porosity magnitude (Erik Nickel, personal 
communication, 2010). The Vuggy typically has lower porosities than the Marly. The 
bottom row plots in Figure 3 shows that there are also observable differences between the 
Vuggy and Marly porosity-permeabilty trends; the black line segments illustrate these 
trends. These plots show that larger porosity values are correlated with increasing 
permeability values and that there is change in the trend around porosity of 0.15 where 
the transition from Vuggy to Marly occurs. If we ignore the points in the overlap region 
(porosity range 0.15 – 0.21), we see that the porosity –permeability trend for each subunit 
is linear. We also see that each sub-unit has a characteristic slope and intercept. For 
example, the slopes associated with the Midale and Frobsiher Vuggy sub-units are 
similar. However they are different from the slopes associated with the Midale and 
Frobisher Marly sub-units. The plots also show the spread in permeability gets smaller 
and that the slope gets smaller (particularly in the Frobisher) when the porosity is > 0.15.  
 
We use the porosity frequencies in Figure 2 together with the porosity/permeability 
trends in Figure 3 to propose porosity and permeability fields that honor the available 
core data, for each layer in the reservoir box. We now describe the algorithm that 
proposes the realizations of porosity and permeability. We will refer to this algorithm as 
the “sampler” because it produces samples of the prior distribution of models, i.e., those 
models that honor the data shown in Figures 2 and 3. An example of permeability 
realizations resulting from this algorithm is shown in Figure 4. 
 
We assume as truth the layers in EnCana’s geologic model, i.e. the lithology designations 
and the boundaries between layers remain fixed from one realization to the next. The 
porosities and permeabilities assigned to nodes within each layer are allowed to vary 
spatially and from one realization to the next. Each new realization consists of a 
perturbation about the previous realization. 
 
Sampler algorithm (comments shown in italics): 
1) Read in EnCana’s geologic model (developed by EnCana during Phase I of the 
project, provided by Barbara Dietiker, Geological Survey of Canada) 
 
2) Initialize layer values. 
For each lithology layer: 
    2a) Read starting model containing lithologies, and initial porosities, and 
permeabilities 
    2b) calculate average value of porosity and permeability 
    2c) identify calculation grid nodes associated with each layer 



 

    2d) assign average value of porosity and permeability to each node 
  
3) For each each realization of porosity and permeability fields: 
        For each lithology layer: 
               3a) choose at random ~ 10% of nodes to change porosity/permeability 
                       For each node to be changed: 
                           3a.1) randomly choose a value of porosity probability (chosenProb) 
                                (use the probability ranges implied by the Fig. 2 histograms) 
                           3a.2) list possible porosity values that have probability > chosenProb 
                           3a.3) choose random porosity value from the 3a.2 list 
                           3a.4) list possible permeability values for the porosity chosen in 3a.3 
                                (use the porosity/permeability correlations in Fig. 3, bottom row) 
                           3a.5) choose a random permeability from the list of possible values, 
                                (assuming a lognormal distribution). 
                           3a.6) assign new porosity and permeability values to grid node 
 
These realizations are used by the flow simulator (NUFT) to predict flow within the 
reservoir reservoir caused by injection/extraction of CO2, H2O and oil. The next section 
describes the flow simulator and how it is used in our application. 
 
 

RUN FLOW SIMULATOR 
We use the Nonisothermal Unsaturated-Saturated Flow and Transport code (NUFT) for 
reservoir-scale multiphase flow and reactive transport simulations.  The NUFT code is a 
highly flexible software package for modeling multiphase, multi-component heat and 
mass flow and reactive transport in unsaturated and saturated porous media (Nitao, 1998).  
An integrated finite-difference spatial discretization method along with implicit time-
integration scheme is used to solve mass and energy balance equations in flow and 
reactive transport models. At each time step the resulting nonlinear equations are solved 
by the Newton-Raphson method. The NUFT code, which is capable of running on PCs, 
workstations, and major parallel processing platforms, has been widely used for many 
applications such as geologic disposal of nuclear waste, CO2 sequestration and storage, 
groundwater remediation, and subsurface hydrocarbon production (Buscheck et al., 2003; 
Glassley et al., 2003; Johnson et al., 2004, 2005).  
 
For multiphase flow and reactive transport modeling, a 3D-domain is selected to 
represent a reservoir box centered at a depth of about 1400 m. This domain represents 
pattern 7, Phase 1A area. The modeling box includes the Ratcliffe, Midale Evaporite, 
Midale Marly, Midale Vuggy, Frobsiher Marly and Frobisger Vuggy units. While the top 
and bottom boundaries are kept impermeable the hydrostatic pressure conditions are 
assigned along the lateral boundary. In addition, vertical and horizontal production wells, 
and horizontal injection wells are included in the model.  
 
The CO2 is injected under supercritical conditions.  Based on reservoir geologic model 
the reservoir domain is divided into two geologic layers, Vuggy and Marly.  Overburden 
and underburden formations will be also considered for simulations done during later 



 

stages of the project.  We address reservoir heterogeneity by generating realizations of 
permeability and porosity fields within each layer. The algorithm described in the section 
“Propose reservoir model realizations” generates these realizations. Due to the presence 
of water, oil and supercritical CO2 three-phase flow conditions are considered, and 
equilibrium conditions are assumed for component partitioning among three phases.  The 
equation-of-state and viscosity of CO2 under supercritical conditions are obtained based 
on the empirical equations developed by Span and Wagner (1996) and Fenghour and 
Wakeman (1998), respectively. The water and oil properties (pressure, volume, 
temperature) will be computed using the empirical formulas that can be found in most of 
textbooks on reservoir modeling (e.g. Chen et al., 2006). The injection-induced reservoir 
pressure perturbations along with CO2 plume distributions will be predicted by the 
reservoir flow model, and then supplied to the algorithms that predict seismic data 
(described next). 
 
 

CALCULATE SEISMIC LIKELIHOOD 
The next step in the processing pipeline is to use a seismic forward model that predicts 
zero-offset seismograms using information produced by the CO2 flow simulator (NUFT). 
Here we describe the various components of the seismic forward model which include 
(refer to Figure 5): 

1) Gasmmann’s petrophysical model to predict changes in bulk modulus and 
seismic velocities caused by changes in reservoir conditions,  
2) module that predicts seismic reflectivities within the “reservoir box”,  
3) module that predicts zero-offset (1D) seismograms,  
4) module that compares the predicted and observed seismograms to compute the 
likelihood that the predicted waveforms come from the “true” model. 

 
 

Compute reflectivities 
As the reservoir fluids, temperature and pressure conditions change during CO2 injection, 
the reservoir’s bulk modulus and density changes. Consequently, seismic velocities 
change resulting in seismic reflectivity changes within the reservoir changes. Fluid 
substitution techniques form an important part of the seismic modeling toolbox because 
they can be used to predict these changes for a range of fluid scenarios. Gassmann’s 
equation (Gassmann, 1951) is the most common and theoretically sound fluid substitution 
technique at seismic frequencies (Smith et al., 2003). It relates the bulk modulus of a rock 
to its porosity, bulk modulus of its porous rock frame, bulk modulus of the mineral 
matrix, and bulk modulus of the fluids. The rock’s bulk modulus can then be used to 
predict seismic velocities. 
 
We next summarize our implementation of the algorithm that uses Gassmann’s equation. 
We follow the procedure described in Smith et al., 2003 but introduce some 
modifications where some derived quantities are replaced with quantities measured using 
Weyburn core. 

1. Look up mineral matrix bulk modulus (Ko) based on core measurements (Table 3.6, 
Wilson and Monea, 2004, and mineral moduli from Smith et al, 2003). 



 

2. Calculate fluid bulk modulus and density based on saturations, bulk moduli and 
densities of constituent fluids for appropriate pressure, temperature conditions. 
Obtain individual bulk moduli from equations of state for each fluid. Use equation 
1 (below). 

3. Look-up porous rock framework bulk modulus (K*) for appropriate pressure, 
temperature conditions (as determined from lab measurements, Brown, 2002). 

4. Calculate moduli for saturated rock using the Gassmann equation. Use equation 4 
(below) and appropriate porosity value ( ). 

5. Calculate Vp, Vs for saturated rock using the moduli from step 4. Use equations 5-7 
(below). 

 
The equation used to calculate the composite fluid modulus is: 
 

   (3) 

 
The brine modulus (Kw) is calculated using the approach of Batzle and Wang, 1992, 
equations 27 -  29. They use a combination of thermodynamic relationships, empirical 
trends and data to develop simplified relationships that produce estimates of realistic fluid 
properties in rock models. 
 
The oil modulus (Koil) and CO2 modulus (Kco2) will be computed using the 
compressibilities computed by the NUFT simulator.  
 
Gassmann’s equation used to calculate saturated rock bulk moduli (Kinj) is: 
 

   (4) 

 
Once (Kinj) is calculated, we are ready to calculate the P and S seismic velocities (Vp ,Vs): 
 

     (5) 

 is the bulk density under initial (pre-injection) conditions and,  



 

 
     (6) 

 
where  is the shear velocity measured on rock core. 
 

 

€ 

Vs =
Ginit

ρb
'      (7) 

 
In equation 7, 

€ 

Vs

 
is the shear velocity measured in the field and 

€ 

ρb
'  is the bulk density 

after fluid substitution. 
 

Calculate synthetic waveforms 
We are now ready to calculate the synthetic waveforms that sample the layers within the 
reservoir box. We have chosen the approach described by Margrave, 2003, to construct 
1D seismograms. Use of a 1-D model is considered appropriate because the seismic data 
we will use has been migrated and the layering is approximately horizontal.  
 
This 1D approach requires that all calculations needed to produce synthetic seismograms 
be done on columns of grid nodes. Calculations that make use of equations 3 – 10 are 
performed on grid node columns. Each set of calculations along a column is independent 
of node values on other node columns. Figure 5 schematically shows the operations 
needed to calculate the seismograms and seismic likelihoods. 
 
 Margrave’s approach constructs the reflection response of a 1D medium to a unit 
impulse. The impulse response only considers primary reflections and ignores multiple 
reflections. This impulse response is then convolved with an appropriate wavelet that 
simulates the effects of the seismic source waveform. The resulting waveform is the 
synthetic 1D seismogram that will be compared with the observed 1D seismograms. This 
1D modeling approach will produce seismograms that are consistent with the available, 
zero-offset, processed seismic data. 
 
 As indicated in Figure 5, once the seismic velocities are calculated, the reflection 
coefficients (R) within the “reservoir box” are computed. These coefficients determine 
the amount of reflected signal generated at each layer interface and, collectively form the 
impulse response along a vertical line of nodes. In equation 8, R is the reflection 
coefficient between two layers having seismic impedances  (top layer) and  (bottom 
layer). Seismic impedance is a function of seismic velocity and bulk density as shown in 
equation 9. 
 
      (8) 

 
      (9) 
 



 

Margrave indicates that synthetic seismograms intended for comparison with fully 
processed seismic data will usually be created using a zero-phase wavelet. The wavelet 
simulates the effects of an impulsive source and band-width limits the source spectrum. 
Two common zero-phase wavelets are the Ornsby and Ricker wavelets.  Margrave 
suggests that the Ornsby wavelet is thought to have an unacceptable level of ripple. The 
Ricker wavelet has a simpler form in the time-domain though it has a broader, less 
controlled passband. A characteristic of this wavelet is that the higher the dominant 
frequency, the broader the bandwidth. We have chosen to implement the Ricker wavelet 
to calculate the synthetic seismograms for the purpose of algorithm testing. Eventually, a 
wavelet that is derived from the observed seismic data will be used in this process. 
Equation 10 shows the analytical form of the wavelet. 
 
      (10) 
 
w(t) is the amplitude as a function of time, t. fdom represents the dominant frequency of 
the wavelet. Figure 6 shows a Ricker wavelet with a dominant frequency of 60 Hz in the 
time-domain and a 1 ms sampling interval. Notice that the wavelet is symmetric about 0, 
and thus, has a zero-phase delay. 
 
The wavelet is then convolved with the impulse response to produce the synthetic 1D 
seismogram. Figure 7 helps to summarize this process. The left graph shows a 1D 
velocity and bulk density model used to calculate a synthetic seismogram. The middle 
graph shows the impulse response obtained for this 1D model. Notice that the magnitude 
of the response is largest where the velocity contrast between adjacent layers is largest. 
Also, the sign of the response depends on whether the velocity is increasing from one 
layer to the next (positive response) or decreasing (negative response). The impulse 
response would be the seismogram observed if the seismic source used to conduct the 
survey was perfectly impulsive and had infinite bandwidth. Real seismic sources are not 
perfectly impulsive and only offer limited bandwidth. Thus, to simulate a real seismic 
source, we need to simulate its limited bandwidth by convolving the impulse response 
with the wavelet described by equation 10 and shown in Figure 6. The predicted 
seismogram is plotted on the right side of Figure 7. Each deflection indicates the two-way 
travel time to a given reflecting interface. Its frequency spectrum has been band-limited 
by the wavelet convolution, and consequently, the pulses associated with each reflecting 
interface are broader (and more realistic) than the corresponding impulse response pulses. 
 
Once seismograms are predicted for each column of grid nodes, we are ready to compare 
the predicted and observed seismograms. 
 
 

Use Metropolis-Hastings to accept or reject proposed reservoir model 
CALCULATE LIKELIHOOD FUNCTION 

We now describe Metropolis-Hastings algorithm, the importance sampling algorithm we 
use to decide whether the proposed model should be accepted or rejected. The likelihood 

 is a measure of the degree of fit between the data predicted (i.e., the calculated 



 

seismograms described previously) assuming model  and the observed data (fully 
processed, filed data derived seismograms), and k is a normalizing constant. In our 
approach, we use a likelihood function of the form: 
 

    (11) 

 

where N is the number of data points,  is the predicted data for a given model 
,  is the vector of observed measurements,  is the estimated data uncertainty, 

and . We note that most deterministic inversions also use the term in parentheses as a 
measure of goodness of fit.  
 

The decision to accept or reject a proposed model is made on the basis of likelihood 
comparisons. Suppose that the current model of the Markov chain is  and that a move 
to an adjacent model  is proposed. If these transitions were always accepted, then 
our MCMC method would be sampling from the prior distribution , i.e., the 
observed data  would not influence the search.  

 

  (12) 

 
Instead, suppose that the decision to accept the proposed transition is made as follows 
(see eq. 12). When the likelihood of the proposed model  is equal to or larger 
than that of the current model , the proposed transition is always accepted.  If 

 but the two values are close to each other, the probability of 

acceptance is still around 1.0. For example, suppose that  = 10 and  = 9.  
In this case, the probability of acceptance (Paccept) will be 9/10 or 0.9.  We then generate a 
uniformly random number RN in the range 0 to 1.0. When Paccept >  RN, the transition to 
model is accepted. Note that there is a high probability of accepting  because 
the odds are very high that Paccept >  RN. Next, let’s suppose that the model  is much 

less consistent with the data such that  = 0.9. In this case, Paccept is 0.09, the odds 
that Paccept >  RN are much smaller and  thus, the odds of accepting the transition are a lot 
smaller. However, even when , Paccept is not zero. Thus, this 
randomized rule allows a transition to a less likely model such that the process will move 
out of a local extremum. Theoretically, it will never get trapped in a region of locally 
high likelihood as long as the likelihood of the proposed model is greater than 0.0. Then, 



 

the randomized acceptance rule guarantees that the probability of accepting this transition 
will always be greater than 0.0. 

 
Metropolis et al. (1953) proved that the samples generated through this process has a 
limiting distribution that is proportional to the desired posterior distribution  -- the 
probability of model  being the true model of nature given that  has been measured. 
As a result of the randomized rule, the search tends to hover in regions of space  
containing models that better fit the prior information and seismic measurements. 
Because of this, space  is traversed more efficiently than with traditional Monte Carlo 
techniques. 
 
If the decision is to accept model , it becomes a part of the posterior distribution, 
and the next proposal ( ) will be generated as a random perturbation about . 
Alternatively, if the decision is made to reject , a copy of  is added to posterior 
distribution, and the next proposal ( ) will be generated as a random perturbation 
about . The net result of this approach is that solutions are sampled at a rate 
proportional to their consistency with available data.  
 
This is a key strength of our MCMC approach. Models that are most consistent with 
available data observations are sampled most often, while models that are incompatible 
with either prior information and/or observations are rarely sampled. As a result, the 
frequency of models in the posterior distribution  can be used to determine the 
probability that a given model is the best explanation for the available data.  It can also be 
used to objectively rank alternative models that are consistent with the data. 
 

Compare predicted and observed seismic waveforms 
In our seismic application, we need to compare predicted and observed waveforms in 
order to calculate the likelihood function, specifically the numerator term in eq. 11. The 
algorithm we have developed follows (comments shown in italics). 
 
1) Trim the observed waveforms (Wobs) to only include the part that corresponds to the 
reservoir box.  
 
2) Scale the amplitudes of the predicted waveforms (Wpred) and Wobs. Scale such that the 
maximum value of each is set to 1.0. This is done because the Wpred and Wobs data have 
arbitrary units and thus, need to be amplitude-matched. 
 
3) Cross-correlate Wpred and Wobs to determine the delay-time.  
 
4) Time-shift Wpred so that it aligns with Wobs. 
 
5) Compute the difference in amplitude for each waveform time-step and sum the 
absolute value of the differences. This corresponds to the operation shown on the right 
hand of eq. 11. 



 

 
 

Analyze the posterior distribution 
After convergence has been verified and pre-burn-in models discarded, the reservoir 
models in the posterior distribution  can be analyzed. Our goal is to distill the 
relevant information in these models so that that we can infer the likely properties of the 
“true” reservoir model under study. The topography of  contains multiple hills 
whose heights are proportional to the likelihoods for each of its member reservoir models 
(this n-dimensional space is shown schematically in Figure 8); each point in model space 
represents one reservoir model. The model corresponding to the peak of each hill is 
commonly referred to as its mode. Multiple hills indicate that the solution to the inverse 
problem is non-unique, the typical case for geophysical inversions. The distribution is 
called multi-modal when multiple hills are present and uni-modal when only a single hill 
is present. The width of each hill indicates that there is uncertainty in the model located at 
the mode; this variability may be due to factors such as measurement sensitivity or 
measurement error. 
 
This complex, multi-modal structure provides a challenge when characterizing the 
distribution and extracting insight about the reservoir models included in . We use 
a clustering approach to extract this insight. Ramirez et al., 2005, describe the clustering 
technique in detail; here we summarize the approach. Clustering is a standard data-
mining technique used to extract structure from a collection of sampled data points – in 
this case sampled reservoir models. It segregates the models sampled from  into 
groups of models that exhibit similar properties.  In our specific example, a cluster is a 
group of reservoir models that show similar spatial distribution of lithology and other 
relevant properties such as porosity and permeability. The likelihood modes in Figure 8 
represent these model clusters. The clustering process is accomplished by measuring the 
distance (in model space), between a model and a cluster center. A cluster’s center is the 
model space location that best represents the central tendencies of all cluster members. 
 
When deciding whether a reservoir model should be considered a member of a particular 
cluster, we measure the distance (in model space) between the candidate model and the 
cluster center. This distance is a measure of the dissimilarity of the sample relative to the 
central tendencies of all the models that are already members of the cluster. A cluster’s 
central tendencies are represented by element-wise distribution of lithology (or other 
relevant properties). That is, for each element, we calculate histograms that show how 
frequently each of the possible lithology values appears in all models included in the 
cluster; these frequencies are normalized to lie between 0 and 1. The following simplified 
example should help clarify this method. 
 
Suppose that each reservoir model consists of three elements and that the set of possible 
lithologies is: {1: dolostone, 2: limestone, 3: evaporite, 4:shale}. Suppose further that 
there are 100 models in a cluster with the element-wise frequency distributions shown in 
Table 1. The frequencies for these are calculated by dividing the number of models 



 

showing a particular lithology index by the total number of models in the cluster. Table 1 
suggests that, for element 1 there are 30 samples with lithology = 1 (dolostone -- 
frequency is 0.3 =  30/100), 40 with lithology = 2 (limestone), 20 with lithology = 3 
(evaporite) and 10 with lithology = 4 (shale). 

 
Table 1: Cluster lithology frequencies (crf) 

 
Element  

lithology index 1 2 3 
1-dolostone 0.3 0.3 0.3 
2-limestone 0.4 0.2 0.2 
3-evaporite 0.2 0.3 0.4 

4-shale 0.1 0.2 0.1 
 
 

Table 2: Model lithology frequencies (mrf) 
 

Element  
lithology index 1 2 3 

1-dolostone 0.0 0.0 0.0 
2-limestone 0.0 1.0 0.0 
3-evaporite 1.0 0.0 0.0 

4-shale 0.0 0.0 1.0 
 
 
We also need to calculate frequency histograms for the reservoir model in question so 
that they can be compared to the cluster’s histograms. Suppose that the model being 
considered has lithology values of (3, 2, 4). The lithology frequencies for this model are 
shown in Table 2; i.e., when one of the possible lithology values is present in a element, 
the frequency for that lithology value is set to 1.0 and frequencies for all other possible 
values are set to 0.0; this is repeated for all elements.  

 
We need to compare the frequencies in Tables 1 and 2 in order to calculate the model-
cluster ‘dissimilarity’ MCD. For every Table 2 element where the frequency = 1.0, we 
subtract the corresponding element in Table 1. Thus, MCD = [(1.0 - 0.2) + (1.0 - 0.2) + 
(1.0 - 0.1)]/3 = 0.83. Large MCD values arise when the model anomaly is located in a 
different part of the 3D model, has different lithology indexes, or both. When MCD 
approaches 0.0, the reservoir model under evaluation shows a lithology distribution that 
is very similar to that of most reservoir models in the cluster.  
 

 The equation for MCD can be written as: 
 



 

    (13) 

 

where m and n are cluster and model identification numbers respectively, nv is the 
number of elements in one resistivity model, nr is the number of possible reservoir 
values, mrf  is the model’s lithology frequency (e.g., Table 1 values) and crf is the 
cluster’s lithology frequency (e.g., Table 2 values).  

 
The MCD can also be used to locate the “center state” (CS) for a given cluster. The CS is 
that resistivity model showing the minimum MCD; it is also the model that is closest to 
the cluster’s “center of mass” and should be the one that best represents the cluster 
members. The CS and the mode refer to the same model when the cluster members are 
distributed symmetrically about the mode. 

 
The algorithm we used to perform the clustering analysis is called the dynamic k-means 
algorithm described in detail by Ramirez et al. 2005. 
 
 

Summary 
We are developing a stochastic inversion tool that will explicitly integrate reactive 
transport modeling, facies-based geostatistical methods, and a novel stochastic inversion 
technique to optimize agreement between observed and predicted storage performance. 
Such optimization will be accomplished through stepwise refinement of: 1) the reservoir 
model—principally its permeability magnitude, anisotropy, and heterogeneity—and 2) 
geochemical parameters—primarily key mineral volume fractions and kinetic data. This 
document describes development activities associated with the first step: a stochastic 
inversion method that will identify reservoir models that optimize agreement between the 
observed and predicted seismic response. This document only describes the tools and 
approaches used for step 1. 
 
The following models will be used to optimize reservoir model permeabilities: 1) A 
geostatistical model that proposes random geologic realizations of the reservoir; this 
module is 90% complete. 2) A flow simulator that predicts CO2 migration and CO2/H20 
production; this module is 100% complete. 3) A seismic forward model that predicts 
zero-offset seismograms using information produced by the CO2 flow simulator; this 
module is 90% complete. 4) The decision to accept or reject a proposal is based on the 
Metroplois-Hastings algorithm; this module is 100% complete.  
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Figures 

 

 
Figure 1. Flow diagram for the first inversion step using seismic data. Note that the 
process will use two or more seismic data sets simultaneously. 
 



 

 
Figure 2. Histograms of core porosity and permeability, Midale and Frobisher formations. 
Data provided by Erik Nickel, 2009, Saskatchewan Ministry of Energy and Resources. 
 
 
 
 



 

 
Figure 3. Permeability plotted as a function of porosity, Midale and Frobisher formations, 
Weyburn reservoir. The Vuggy and Marly sub-units are approximately separated based 
on porosity. The lower row of plots uses red circles to indicate the mean of log10 
permeability for each 0.01 porosity window. The red triangles indicate the standard 
deviation of log 10 permeability. The black line segments represent the porosity-
permeability relationships that will be used for the Vuggy and Marly subunits in each 
formation. 
 
 

 



 

Figure 4. Permeability realizations using “simple” algorithm to randomly populate the 
porosity and permeability fields using the trends in Figures 2 and 3. 
 
 

 
Figure 5. Flow diagram for the seismic likelihood calculation. 
 
 

 



 

Figure 6. Amplitude of a Ricker wavelet as a function of time. The wavelet’s  dominant 
frequency is 60 Hz. The sample rate is 1 ms. 
 

 
Figure 7. The left graph shows the assumed 1D velocity model (blue curve and the 
assumed bulk density (red curve) as a function of depth. The middle graph shows the 
impulse response calculated for the velocity/density model. The right graph shows the 
corresponding seismogram. The vertical axes of the impulse response and seismogram 
curves show units of two-way travel-time (seconds). 
 
 

 
Figure 8 schematically shows the sector of model space included in the posterior 
distribution. Each grid node represents one 3D reservoir model. Each hill represents a 
cluster of reservoir models having similar properties. Multiple peaks indicate that the 
MCMC inversion has produced non-unique results. The taller peaks identify regions 
containing models that are most consistent (i.e., most probable) with the observed seismic 
data. 



 

 
 


